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Abstract¥ The present work describes a novel
technique of parameterization for microwave
circuit design and modding in view of a fullwave
3D electromagnetic (EM) optimization. The
proposed technique is based on the poles and
modes computation using the finite element
method and the use of the determined poles and
modes for obtaining the transfer function
char acterizing the studied microwave structure
frequency response over alargefrequency band.
The technique is then extended to geometry
parameterization by computing the geometric
derivatives of the determined poles and ther
corresponding modes. The computation of the
derivatives allows establishing a very accurate
parametric model describing the variation of the
poles and the modes as a function of the circuit
geometry deformation. Therefore, no more
simulations or additional meshing are needed to
evaluate the response of the circuit when its
dimensions are changed.

|. Introduction

The fullwave 3D EM-field anaysis and
optimization of a microwave circuit require to
perform several simulations using electromagnetic
solvers based on the use of rigorous numerical
methods like Finite Elements (FE) [1], or Finite
Difference in Time Doman (FDTD). However,
although the use of such methods is very accurate,
each EM simulation is highly time consuming and
optimizing using traditional techniques becomes a
heavy task.

The major methods wused for microwave
optimization are based on establishing an
equivalent electrical circuit that is used to evaluate
the structure performances when their dimensions
are tuned. However, in spite of the fact that this
approach is very attractive due to the insignificant
computer resources used for simulating the circuit,
the major drawback is the lack of accurate electrical
equivalent circuits models for complex structures.

In this work, our challenge is to establish an
efficient method based on the rigorous EM
simulation for frequency and  geometry
parameterization. For this purpose, we propose the
use of poles expansion method which, not only
reduces the CPU time consumed for studying a
microwave circuit but also characterizes any circuit

by its transfer function. Hence, the problem of
establishing a global parametric model, which links
the structure response to the frequency and the
geometric parameters, becomes a problem of
elaborating an accurate mapping between the
position of poles and the circuit geometric
parameters.

The parametric model is constructed by
evaluating the Taylor polynomia expansion for
each pole (see Fig. 1). For this purpose, our
technique is based on the accurate evaluation of
each pole derivatives.
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Fig.1. Parametric global model

[1. Circuit transfer function using polesand
modes

The projection of Maxwell equations using
finite element method (FEM) leads to the general
formulation [1]:

R- kM - ij)e: jkh& Jepn Q)
n

Where R and M are the rigidity and the masse
matrices respectively. The formulation (1) can be
written in the global form of a linear system as:
A(k).e=B(k). The modes of the non-excited
structure are obtained for the values of k which
make the matrix A(K) singular. In the case of a
lossless structure, these values are given by:

R.V - k?M.\ =0 @
The k values and the \{ vectors are the system-
generalized eigenvalues and eigenvectors, which

correspond to the resonant frequencies and the
cavity modes.
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Different well-known algorithms as the Arnoldi-
Lanczos one [2] can perform solving the system
given in (2). Applying the Kurokawa principle [3],
the E or the H-fields propagating inside the cavity
can be expressed as a decomposition on the cavity
modes. Hence, we can write the Efield solution,
for each excited port noted by n as:

en = &ajn(k).Vi (©)

|

Using (1), (2) and (3) the coefficients ani(k) can
be determined and the Efield can be given by the
following expression:

Chi

Vi @)
2 2 !
ki -k

en=jhka
i

Where:
» Cni =<Jgpn! Vi > (scalar product)
= Joi : ™ Port excitation
= V; : cavity mode vector

Using (4), the impedance matrix [Z] can be
calculated, since each impedance term, associated
to the ports noted n and m, is given by the relation

(Zom="epnem) [1]. Therefore, the pole
expansion of the impedance matrix can be written
intheform:
2 CniCmi
Znm=jhk ? an_lr(nzl ®
|

The formulation given in (5) is the global transfer
function characterizing the studied microwave
structure expressed in terms of a pole expansion.
However, some poles appear at the zero frequency
and their computation is highly time consuming.
For that reason, the zero poles are separated from
others and the expression (5) becomes:

Q c .
Zom =254 kB + jk® 4 —CACHL (§)
J

i=1kZ (k2 - k?)
i
i A =aCyChi
Where: : nm ) ni ~mi (7)
: Bnm = g Cni Cmi
i =1 k

The quantities Amn and Bmn convergence slowly
[6]. They depend on the type of excitation so we
determine them using asymptotic approximations.
For example, for rectangular waveguides junctions
having n excited ports, they are determined using
thefollowing relation :
Zpm® dpmZ p

®
k® 0

Zp » J;h for TEmode Iu

a i
Where i i 9
zp»k?h+ﬂ forTMmodei’, ©

jk  2ka i

ka=p/a I

I

b

This relation is valid assuming that the reference
planes taken on the problem ports are sufficiently

far from the studied junction (not less than half
wavelength).
Comparing (6) and (8) we obtain:
ik O, . 135  CniCpi
i+ jhk°g —————
(1+cp)kng i k2(k? - k?)

(10)
= cpisOorldepending on TE or TM excitation
mode respectively.

thm - Kroneker symbol.
=k, wavenunber corresponding to nt" pole.
" Cpi=<Jepi/Vn>.

The last formula demonstrates that the
computation of the finite number of poles and their
corresponding modes suffice to characterize the
harmonic behavior of any circuit. Practicaly, to
have a good accuracy, the number of required poles
“N” depends on the frequency studied range [fuin -
fmad- A good approximation can be achieved when
the largest calculated pole position is situated
greater than twice the upper frequency band (
fn>2fnad [4]. Furthermore, the last formulation
demonstrates that the computation of poles and
their corresponding modes alows to obtain
analytically the broad band harmonic behavior for
the studied microwave circuit.

a1k
an =dnmh§ Tkn +

I11. Polesand modesderivatives

Many methods have been used for constructing
a mapping that takes into account the geometric
variation of a circuit [5]. In this paper, we propose
the use of Taylor expansion to build a relationship
between each mode and pole on one side and the
geometric parameters on the other side. Therefore,
each pole or mode is parameterized using the
Taylor polynomials:

n
o+ Om =x(p)+ & op" X0 (g
n>0 n
Where “p” is the geometric parameter vector and
“Xx" isthe considered pole or mode.
To build the required Taylor polynomial, we have

first to compute the derivatives denoted x(n)(p) .
For this purpose, let's consider the equations

verified by each pole and its corresponding mode:
R(PV(P) - | (AM(p)V(p)=0 (12a)

V(p)M(pV(p) =1 (12b)
Where, | is a mathematical notation for the pole
(corresponding to k%). Deriving equation (12) to the
order “m” and using the Leibnitz formula we
obtain the following system:

. . . 1.
(R-IM)vm-Iva:-‘g](I# 1My +r_r£ '(my™

i=1 i=1
(13.9)
Sty (M = gg”é‘tvM(i)v(m i), ngltv(i)(Mv)(m— i)g
6=1 i=1
(13.b)
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(i.e. For @l the derivatives we note
1 7K
WK

“fp
The modes and poles derivatives are then computed
using the iterative system given in (13a) and (13b).
The derivatives of R and M matrices describing the

structure mesh are obtained using an automatic
differentiation technique[6].

xM(p) =

1V. Test cases

IV.1. Band passfilter

Thistest is performed for studying the influence
of two predefined geometric parameters and the
frequency on the scattering parameters of a band
pass waveguide filter. The dimensions of the circuit
areshownin Figure 2.

v >
10.67 mm Azmm
Fig. 2. Threeirises Band Passfilter

The chosen geometrical parameters are the iris
length “w” and the cavity length “L;”. The
parameters variation ranges are givenin Table 1.

Table 1. Band passfilter parameters ranges

Min Initial  Max

w [mm] 2 313 4
L, [mm] 8 10 12
Frequency [GHZz] 17 - 22

Twenty modes are needed to calculate the
scattering parameters S;; and S;p. A six order
geometric derivation is used to construct the multi-
parametric Taylor polynomial model describing the
variation of the modes as a function of the
geometric parameters. Once the Taylor expansion is
built for each mode and pole, only few secondson a
workstation are needed to determine the pole
positions and their associated modes for any value
of the geometric parameters (“L1” and “w”) inside
the predefined range. Figure 3 shows the ten first
poles positions when “L,” isvaried. The results are
compared to those obtained using direct
computation of the poles using an adequate
meshing of the structure corresponding to each
variation of "L;".

From these results, it can be seen that one can
easily design a filter and vary its pass frequency

band, by varying the positions of the interesting
modes.

Furthermore, using the pole expansion method
applied to the determined poles and modes enables
to determine rapidly and accurately the harmonic
response of the circuit for any value for the
geometric parameters inside their respective
variation ranges. Figure 4 and Figure 5 show the
variation of the return loss S;1 as a function of “w”
and “L," respectively using our proposed technique.
A very good agreement is noticed between these
results and those obtained using a direct
computation for each value of the geometric
parameters.

Modes [GHz]
SR

' L ' ' ' '
8 85 9 95 10.5 11 11.5 12

10
L1[mm]

Fig. 3. Modes variation as a function of “L," for the
waveguide band pass filter. Comparison between direct
computation (doted circles) and results using our
technique (continued curves

15 1‘6 1‘7 1;! 1; 2‘0 2‘1 2‘2 ZIS 2:! 25
Frequency [GHz]
Fig. 4. Variation of S;; asa function of frequency using

“W’ as a parameter. (doted points) direct computation
(continued curves) our technique

15 16 17 18 F;:quenzgy [GHZZI] 22 23 24 25
Fig. 5. Variation of S;; asafunction of frequency using
“L," asa parameter. (doted points) direct computation

(continued curves) our technique.
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I'V.2. Cavity resonator

This test is performed to compare our
theoretical results to those obtained from
measurements. The fabricated structure is a
cylindrical cavity having a resonator inside it.
Figure 17 gives the studied structure having “r” and
“d” as geometrical parameters. The parameters
variation ranges are given in Table 2.

¢+

P 30 mm
=
=
| Er=37 Er=2.
[V
14.5 mm
Fig.6. Didlectric cavity resonator
Table 2. Cavity resonator parameters ranges
Min Initial Max
r [mm] 13 15 17
d [mm] 7 10.5 12
Frequency [GHZz] 2 5

The considered modes are denoted TMgix,
TEpix, EH, and EH,, (see Figure 7) according to
their analogue form to modes obtained for an air-
cylindrical cavity.

Figure 8 gives the modes variation obtained
using a Taylor 6" order expansion compared to the
measurements results when varying the parameter
“d”. This figure shows a very good agreement
between results using our technique and the
experimental ones.

[» EH, Mode | -

TMo1x Mode

Fig. 7. Determined modes for the dielectric
cavity resonator

V. Conclusion

A new method has been proposed for frequency
and geometry parameterization that can be
efficiently used for circuit design and optimization

in the frequency domain using the finite element
method. It combines a pole expansion of the EM
fields and the derivatives computation to build an
accurate multi-parametric model for both frequency
and geometry parameters.
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Fig. 8. Mode variations as a function of the parameter
“d" . Comparison between Taylor 6 " order expansion
(filled line) and measurements (circles)

The characterization of the frequency response
by a transfer function defined by its poles and
modes decreases the CPU time required for
simulating a microwave circuit. This is because
only afew number of modes is needed to accurately
fit the response. Furthermore, the Taylor expansion
applied on the calculated modes allows to judge
how one can modify the circuit dimensions
according to a required response. Once the modes
and poles mappings are established, one can rapidly
study the influence of any circuit dimensions
variations on the harmonic response without any
need of repetitive mesh creation or EM rigorous
simulations.
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