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Abstract  The present work describes a novel 
technique of parameterization for microwave 
circuit design and modeling in view of a fullwave 
3D electromagnetic (EM) optimization. The 
proposed technique is based on the poles and 
modes computation using the finite element 
method and the use of the determined poles and 
modes for obtaining the transfer function 
characterizing the studied microwave structure 
frequency response over a large frequency band.  
The technique is then extended to geometry 
parameterization by computing the geometric 
derivatives of the determined poles and their 
corresponding modes. The computation of the 
derivatives allows establishing a very accurate 
parametric model describing the variation of the 
poles and the modes as a function of the circuit 
geometry deformation. Therefore, no more 
simulations or additional meshing are needed to 
evaluate the response of the circuit when its 
dimensions are changed.  

I. Introduction 

The fullwave 3D EM-field analysis and 
optimization of a microwave circuit require to 
perform several simulations using electromagnetic 
solvers based on the use of rigorous numerical 
methods like Finite Elements (FE) [1], or Finite 
Difference in Time Domain (FDTD). However, 
although the use of such methods is very accurate, 
each EM simulation is highly time consuming and 
optimizing using traditional techniques becomes a 
heavy task. 
The major methods used for microwave 
optimization are based on establishing an 
equivalent electrical circuit that is used to evaluate 
the structure performances when their dimensions 
are tuned. However, in spite of the fact that this 
approach is very attractive due to the insignificant 
computer resources used for simulating the circuit, 
the major drawback is the lack of accurate electrical 
equivalent circuits models for complex structures. 
In this work, our challenge is to establish an 
efficient method based on the rigorous EM 
simulation for frequency and geometry 
parameterization. For this purpose, we propose the 
use of poles expansion method which, not only 
reduces the CPU time consumed for studying a 
microwave circuit but also characterizes any circuit 

by its transfer function. Hence, the problem of 
establishing a global parametric model, which links 
the structure response to the frequency and the 
geometric parameters, becomes a problem of 
elaborating an accurate mapping between the 
position of poles and the circuit geometric 
parameters.  

The parametric model is constructed by 
evaluating the Taylor polynomial expansion for 
each pole (see Fig. 1). For this purpose, our 
technique is based on the accurate evaluation of 
each pole derivatives.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Parametric global model 
 

II. Circuit transfer function using poles and 
modes  

The projection of Maxwell equations using 
finite element method (FEM) leads to the general 
formulation [1]: 

( ) ∑=−−
n

epnJjkejkFMkR η 2    (1) 

Where R and M are the rigidity and the masse 
matrices respectively. The formulation (1) can be 
written in the global form of a linear system as: 

)().( kBekA = . The modes of the non-excited 
structure are obtained for the values of k which 
make the matrix A(k) singular. In the case of a 
lossless structure, these values are given by:  

02 =iii M . V  -  kR . V       (2) 

The ki values and the Vi vectors are the system-
generalized eigenvalues and eigenvectors, which 
correspond to the resonant frequencies and the 
cavity modes.  
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Different well-known algorithms as the Arnoldi-
Lanczos one [2] can perform solving the system 
given in (2). Applying the Kurokawa principle [3], 
the E or the H-fields propagating inside the cavity 
can be expressed as a decomposition on the cavity 
modes. Hence, we can write the E-field solution, 
for each excited port noted by n as:  

 (k).Ve
i

iinn ∑= α        (3) 

Using (1), (2) and  (3) the coefficients  )(kniα can 

be determined and the E-field can be given by the 
following expression: 
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Where:  
§ Cni = <Jepn / Vi  >  (scalar product) 
§ Jepi : n

th  Port excitation  
§ Vi : cavity mode vector 

 
Using (4), the impedance matrix [Z] can be 
calculated, since each impedance term, associated 
to the ports noted n and m, is given by the relation 

( mepn
t

nm eJZ = ) [1]. Therefore, the pole 

expansion of the impedance matrix can be written 
in the form: 
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The formulation given in (5) is the global transfer 
function characterizing the studied microwave 
structure expressed in terms of a pole expansion. 
However, some poles appear at the zero frequency 
and their computation is highly time consuming. 
For that reason, the zero poles are separated from 
others and the expression (5) becomes:  
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The quantities mnA  and mnB  convergence slowly 
[6]. They depend on the type of excitation so we 
determine them using asymptotic approximations.  
For example, for rectangular waveguides junctions 
having n excited ports, they are determined using 
the following relation : 
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This relation is valid assuming that the reference 
planes taken on the problem ports are sufficiently 

far from the studied junction (not less than half 
wavelength). 
Comparing (6) and (8) we obtain: 
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 (10) 
§ χn is 0 or 1 depending on TE or TM excitation 

mode respectively. 
§ δnm : Kroneker symbol.  
§ nk  wavenumber corresponding to n th  pole. 

§ .n/VepiJ  niC ><=   

The last formula demonstrates that the 
computation of the finite number of poles and their 
corresponding modes suffice to characterize the 
harmonic behavior of any circuit. Practically, to 
have a good accuracy, the number of required poles 
“N” depends on the frequency studied range [fmin - 
fmax]. A good approximation can be achieved when 
the largest calculated pole position is situated 
greater than twice the upper frequency band ( 
fN>2fmax) [4]. Furthermore, the last formulation 
demonstrates that the computation of poles and 
their corresponding modes allows to obtain 
analytically the broad band harmonic behavior for 
the studied microwave circuit.  
 

III. Poles and modes derivatives 

Many methods have been used for constructing 
a mapping that takes into account the geometric 
variation of a circuit [5]. In this paper, we propose 
the use of Taylor expansion to build a relationship 
between each mode and pole on one side and the 
geometric parameters on the other side. Therefore, 
each pole or mode is parameterized using the 
Taylor polynomials : 
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Where “p” is the geometric parameter vector and 
“x” is the considered pole or mode.  
To build the required Taylor polynomial, we have 

first to compute the derivatives denoted )()( pnx . 
For this purpose, let’s consider the equations 
verified by each pole and its corresponding mode: 

0)()()()()( =− pVpMppVpR λ    (12a) 

1)()()( =pVpMpVt       (12b) 
Where, λ is a mathematical notation for the pole 
(corresponding to k2). Deriving equation (12) to the 
order “m” and using the Leibnitz  formula we 
obtain the following system: 
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(i.e. For all the derivatives we note 
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The modes and poles derivatives are then computed 
using the iterative system given in (13a) and (13b). 
The derivatives of R and M matrices describing the 
structure mesh are obtained using an automatic 
differentiation technique [6]. 
 

IV. Test cases 

IV.1. Band pass filter 

This test is performed for studying the influence 
of two predefined geometric parameters and the 
frequency on the scattering parameters of a band 
pass waveguide filter. The dimensions of the circuit 
are shown in Figure 2.  
 
 
 
 
 
 
 
 
 

Fig. 2. Three irises Band Pass filter  
 
The chosen geometrical parameters are the iris 

length “w” and the cavity length “L1”. The 
parameters variation ranges are given in Table 1. 

 
Table 1. Band pass filter parameters ranges 

 

 Min Initial  Max 

w [mm] 2 3.13 4 
L1 [mm] 8 10 12 
Frequency [GHz] 17 - 22 

 
Twenty modes are needed to calculate the 

scattering parameters S11 and S12. A six order 
geometric derivation is used to construct the multi-
parametric Taylor polynomial model describing the 
variation of the modes as a function of the 
geometric parameters. Once the Taylor expansion is 
built for each mode and pole, only few seconds on a 
workstation are needed to determine the pole 
positions and their associated modes for any value 
of the geometric parameters (“L1” and “w”) inside 
the predefined range. Figure 3 shows the ten first 
poles positions when “L1” is varied. The results are 
compared to those obtained using direct 
computation of the poles using an adequate 
meshing of the structure corresponding to each 
variation of "L1". 
From these results, it can be seen that one can 
easily design a filter and vary its pass frequency 

band, by varying the positions of the interesting 
modes.  

Furthermore, using the pole expansion method 
applied to the determined poles and modes enables 
to determine rapidly and accurately the harmonic 
response of the circuit for any value for the 
geometric parameters inside their respective 
variation ranges. Figure 4 and Figure 5 show the 
variation of the return loss S11 as a function of “w” 
and “L1” respectively using our proposed technique. 
A very good agreement is noticed between these 
results and those obtained using a direct 
computation for each value of the geometric 
parameters.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Modes variation as a function of “L1“ for the 
waveguide band pass filter. Comparison between direct 

computation (doted circles) and results using our 
technique (continued curves 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Variation of S11 as a function of frequency using 
“W” as a parameter. (doted points) direct computation 

(continued curves) our technique 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Variation of S11 as a function of frequency using 
“L1” as a parameter. (doted points) direct computation 

(continued curves) our technique. 
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IV.2. Cavity resonator  

This test is performed to compare our 
theoretical results to those obtained from 
measurements. The fabricated structure is a 
cylindrical cavity having a resonator inside it. 
Figure 17 gives the studied structure having “r” and 
“d” as geometrical parameters. The parameters 
variation ranges are given in Table 2.  

 
Fig.6. Dielectric cavity resonator 

 
 

Table 2. Cavity resonator parameters ranges 
 

 Min Initial  Max 

r [mm] 13 15 17 

d [mm] 7 10.5 12 
Frequency [GHz] 2  5 

 
The considered modes are denoted TM01x, 

TE01X, EHI and EHII (see Figure 7) according to 
their analogue form to modes obtained for an air-
cylindrical cavity.  

Figure 8 gives the modes variation obtained 
using a Taylor 6th order expansion compared to the 
measurements results when varying the parameter 
“d”. This figure shows a very good agreement 
between results using our technique and the 
experimental ones.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Determined modes for the dielectric  
cavity resonator 

V. Conclusion 

A new method has been proposed for frequency 
and geometry parameterization that can be 
efficiently used for circuit design and optimization 

in the frequency domain using the finite element 
method. It combines a pole expansion of the EM 
fields and the derivatives computation to build an 
accurate multi-parametric model for both frequency 
and geometry parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Mode variations as a function of the parameter 
“d”. Comparison between Taylor 6 th order expansion 

(filled line) and measurements (circles) 
 
The characterization of the frequency response 

by a transfer function defined by its poles and 
modes decreases the CPU time required for 
simulating a microwave circuit. This is because 
only a few number of modes is needed to accurately 
fit the response. Furthermore, the Taylor expansion 
applied on the calculated modes allows to judge 
how one can modify the circuit dimensions 
according to a required response. Once the modes 
and poles mappings are established, one can rapidly 
study the influence of any circuit dimensions 
variations on the harmonic response without any 
need of repetitive mesh creation or EM rigorous 
simulations.  
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